分类 教学笔记 下的文章

耶鲁基础物理6.2二元函数与偏导数



我们将在二维空间推导动能定理和能量守恒定律。我希望得到这样的关系:$K_1+U_1=K_2+U_2$,式中$U=U(x,y)$。

如何画二元函数$f(x,y)$的图像?

在$x-y$平面上一点$(x,y)$处沿与$x-y$平面垂直的方向上量度$f(x,y)$的距离,描出一个点,遍历$x-y$平面上所有点做此操作,描出的所有点构成一个曲面,这个曲面就是二元函数$f(x,y)$的图像。

自变量$x$和$y$变动一点,$f(x,y)$的函数值如何变化?

自变量有无限多种变动方式,可以沿$x$轴变动,也可以沿$y$轴变动,也可以沿两坐标轴之间的某个角度变动。

我们先看看自变量沿坐标轴变动,函数值的变化。

从点$(x,y)$变动到另一点$(x+\Delta x,y)$,函数值增量为$\Delta f=f(x+\Delta x,y)-f(x,y)$,$\Delta f$除以$\Delta x$,令$\Delta x \to 0$,得函数对$x$的偏导数

- 阅读剩余部分 -

耶鲁基础物理6.1微积分复习



图6.1 当$x$变化了$\Delta x$,函数的增量$\Delta f$可近似为 $\Delta f\approx f'(x)\Delta x$,$f'(x)=\frac{\mathrm df}{\mathrm dx}$。实线为原来的函数,虚线为斜率为$f'(x)$的直线的线性近似。

本节简要介绍下微积分,为后面要讲的东西做一些数学准备。

- 阅读剩余部分 -

耶鲁基础物理5.3能量守恒定律



总结前文讨论,得

\begin{equation} K_2-K_1=\int_{x_1}^{x_2}F(x)\mathrm dx=G(x_2)-G(x_1)\equiv G_2-G_1 \label{5.10}\tag{5.10} \end{equation}

整理得

\begin{equation} K_2-G_2=K_1-G_1 \label{5.11}\tag{5.11} \end{equation}

现在,我们做一个细微的变化,引入函数

\begin{equation} U(x)=-G(x),\quad F(x)=-\frac{\mathrm dU}{\mathrm dx} \label{5.12}\tag{5.12} \end{equation}

于是,得到

\begin{equation} E_2\equiv K_2+U_2=K_1+U_1\equiv E_1 \label{5.13}\tag{5.13} \end{equation}

这就是能量守恒定律,其中$E=K+U$称为总机械能,$U$称为势能

- 阅读剩余部分 -

耶鲁基础物理5.1能量概论 5.2动能定理



5.1 能量概论

能量守恒定律是一条生命力顽强的定律。当适用于亚原子范围的量子力学问世后 ,牛顿力学许多弥足珍贵的概念都被抛弃了。你有所了解吗?

比如,在量子世界,粒子不再有确定的位置和 速度,粒子并不沿着连续的轨道运动。你的生活经验和牛顿力学告诉你,粒子两次现身之间一定有一条连续的轨道相连,但是,在量子世界里,事实不是这样的。

在量子世界,牛顿力学许多思想都被抛弃了,然而,能量守恒观点却经受住了量子革命的考验而幸存下来。

- 阅读剩余部分 -

耶鲁基础物理4.7圆周运动 转圈



图4.5 左图为物体被绳子吊着做圆周运动,在水平面内左半径为$R$的圆周运动,吊绳与竖直方向夹角为$\theta$。右图为赛车在左半径为$R$的圆形赛道上行驶,赛道倾角为$\theta$。符号$\otimes$表示物体向纸面以内运动。

现在我们研究各种圆周运动。

首先看图4.5中的A图,物体被绳子吊着做圆周运动,绳子与竖直方向有个夹角$\theta$,这个角度与圆周运动速率为$v$和轨道半径为$R$有什么关系?

- 阅读剩余部分 -

耶鲁基础物理4.5斜面



图4.3 物体位于斜面上。左图中无摩擦力,右图中有摩擦力。

斜面进入物理习题是物理学习噩梦的开始。但我们还是要讲斜面。为什么?成心给学生找罪受?

不是为了难为学生,是为成就学生,这是入门的门票,学懂这个,才可能学懂更高层次的内容。

- 阅读剩余部分 -

耶鲁基础物理4.1一道解过的例题

物理学的目标是能够根据当前已知的事情预测未来。我来举一个非常简单的例子,看看牛顿定律是如何实现这个目标的。



图4.1 质量为$m$的物体与劲度系数为$k$的弹簧相连,虚线表示这个物体偏离平衡位置$x$远处。

如图4.1所示,在光滑桌面上有一个质量为$m$的物体,与劲度系数为$k$的弹簧相连,弹簧的另一端固定于静止的墙上。虚线表示这个物体正位于距离平衡位置$x$远处。我把这个物体拖动一段距离$A$,然后释放。以上就是我们所知道的全部。这个物体会如何运动?

- 阅读剩余部分 -